Skip to contents

All functions

BuildMDP()
The main function builds an adjacency list of the theoretical order of mutations. The same MDP mask can be reused different mutations
add_cell_annotation()
Title
annotate_variants()
Annotate variants of interest
attach_weights()
Assigns observed counts as weights to the Markov Decision Process
clonograph()
Plotting clonographs
compare_VAFs()
Title
compute_clone_statistics()
Title
enumerate_clones()
Enumerate clones
extract_droplet_size()
Extract protein library size, dna library size, and amplicon size for all droplets.
fcs_export()
Title
gemerate_txdb()
Title
get_own_path()
A way to navigate the MDP for any given starting root node to leaf node.
impute_cluster()
Title
loom_to_sce()
Title
match_clonal_graph()
Title
mdp_Q_learning_with_linklist()
This file run Reinforcement Learning (model-free Q-learning) to evaluate the most likely mutation paths from the data
normalize_protein_data()
Normalize Protein Data
optimize_matrix()
Title
quality_output()
Produce long form quality metrics for each cell-variant pair for read depth, allele frequency, and genotype quality
readDNA_CN_H5()
This function generates the Copy Number by determining the ploidy of each mutation
select_clones()
Select clones of interest on the basis QC metrics
tabulate_mutations()
Title
tapestri_h5_to_sce()
Import Tapestri H5 data and extract genotype matrix
trajectory_analysis()
Run Trajectory Analysis after extraction from SingleCellExperiment object
variant_ID()
Variant identification and frequency tallies
visualize_WT_dominant_clone()
Title
visualize_all_WT_dominant_clone()
Title
visualize_any_optimal_path()
Title
visualize_full_network()
Title