Function reference
-
BuildMDP()
- The main function builds an adjacency list of the theoretical order of mutations. The same MDP mask can be reused different mutations
-
add_cell_annotation()
- Title
-
annotate_variants()
- Annotate variants of interest
-
attach_weights()
- Assigns observed counts as weights to the Markov Decision Process
-
clonograph()
- Plotting clonographs
-
compare_VAFs()
- Title
-
enumerate_clones()
- Enumerate clones
-
extract_droplet_size()
- Extract protein library size, dna library size, and amplicon size for all droplets.
-
fcs_export()
- Title
-
gemerate_txdb()
- Title
-
get_own_path()
- A way to navigate the MDP for any given starting root node to leaf node.
-
impute_cluster()
- Title
-
loom_to_sce()
- Title
-
match_clonal_graph()
- Title
-
mdp_Q_learning_with_linklist()
- This file run Reinforcement Learning (model-free Q-learning) to evaluate the most likely mutation paths from the data
-
normalize_protein_data()
- Normalize Protein Data
-
optimize_matrix()
- Title
-
quality_output()
- Produce long form quality metrics for each cell-variant pair for read depth, allele frequency, and genotype quality
-
readDNA_CN_H5()
- This function generates the Copy Number by determining the ploidy of each mutation
-
select_clones()
- Select clones of interest on the basis QC metrics
-
tabulate_mutations()
- Title
-
tapestri_h5_to_sce()
- Import Tapestri H5 data and extract genotype matrix
-
trajectory_analysis()
- Run Trajectory Analysis after extraction from SingleCellExperiment object
-
variant_ID()
- Variant identification and frequency tallies
-
visualize_full_network()
- Title