Function reference
-
BuildMDP() - The main function builds an adjacency list of the theoretical order of mutations. The same MDP mask can be reused different mutations
-
add_cell_annotation() - Title
-
annotate_variants() - Annotate variants of interest
-
attach_weights() - Assigns observed counts as weights to the Markov Decision Process
-
clonograph() - Plotting clonographs
-
compare_VAFs() - Title
-
enumerate_clones() - Enumerate clones
-
extract_droplet_size() - Extract protein library size, dna library size, and amplicon size for all droplets.
-
fcs_export() - Title
-
gemerate_txdb() - Title
-
get_own_path() - A way to navigate the MDP for any given starting root node to leaf node.
-
impute_cluster() - Title
-
loom_to_sce() - Title
-
match_clonal_graph() - Title
-
mdp_Q_learning_with_linklist() - This file run Reinforcement Learning (model-free Q-learning) to evaluate the most likely mutation paths from the data
-
normalize_protein_data() - Normalize Protein Data
-
optimize_matrix() - Title
-
quality_output() - Produce long form quality metrics for each cell-variant pair for read depth, allele frequency, and genotype quality
-
readDNA_CN_H5() - This function generates the Copy Number by determining the ploidy of each mutation
-
select_clones() - Select clones of interest on the basis QC metrics
-
tabulate_mutations() - Title
-
tapestri_h5_to_sce() - Import Tapestri H5 data and extract genotype matrix
-
trajectory_analysis() - Run Trajectory Analysis after extraction from SingleCellExperiment object
-
variant_ID() - Variant identification and frequency tallies
-
visualize_full_network() - Title